La phonation chez les enfants porteurs de trachéotomie

Gaëlle CRESPEL, Orthophoniste, chirurgie ORL hôpital Bichat Claude Bernard Zina GHELAB, IPA, chirurgie ORL hôpital Robert Debré

I / La communication chez l'enfant

II / Trachéotomie : généralités

III / Les différents modes de communication pour l'enfant

trachéotomisé

IV / La phonation

Développement de la communication et du langage

Communication et langage (1)

1er mois:

Perception de la charge affective

Différencie la voix humaine des autres sons, reconnaît celle de ses parents

Bruits végétatifs (pleurs)

2ème mois:

Sourire réponse / Poursuite oculaire

Début du « r »

3-4èmes mois:

Attachement

Début d'imitation

Jeux vocaux et interactions (rires)

Communication et langage (2)

5-6èmes mois :

Se reconnaît comme différent de la mère

Productions sonores plus variées et volontaires

7 à 9ème mois :

Reconnaissance de l'étranger

Pointage proto-impératif

Départ babillage

10 à 12ème mois :

Souffle volontaire

Pointage proto-déclaratif

Productions intonatives, onomatopées, apparition des premiers mots

Compréhension d'ordres simples

Communication et langage (3)

13 à 18 mois :

Meilleur contrôle de la coordination respiration / phonation

Association de mots

18 mois : explosion lexicale

19 à 24 mois :

Différenciation souffle nez / bouche

Jeu symbolique

Premières phrases

Trachéotomie: généralités

Indications

- Obstruction des voies aériennes supérieures
- Nécessité d'une ventilation prolongée
- Protection pulmonaire
- **Dysfonctionnement de la commande centrale**

Gergin et al. Indications of pediatric tracheostomy over the last 30 years: Has anything changed? Int J Pediatr Otorhinolaryngol. août 2016

Grønhøj C et al. Indications, risk of lower airway infection, and complications to pediatric tracheotomy: report from a tertiary referral center. Acta Otolaryngol (Stockh). août 2017

Age de réalisation

En pédiatrie la trachéotomie est pratiquée très tôt dans la vie des enfant :

L'âge médian, en fonction des études varie de 1,5 ans à 8 ans

7.6

Demographic and Clinical Characteristics of the Study Population.

Characteristic	Finding		
Demographic Characteristics		Age	
Median (IQR) age in years at tracheostomy	8 years (1,16)	<1 year	176 (41)
Age categories (%)		1–5 years	102 (24)
0-11 months	37.3	>5 years	148 (35)
1-4 years	37.3		
5-12 years	17.9		

McPherson et al. A decade of pediatric tracheostomies: Indications, outcomes, and long-term prognosis. Pediatr Pulmonol. juill 2017

Watters K et al. Two-year mortality, complications, and healthcare use in children with medicaid following tracheostomy. The Laryngoscope. nov 2016

≥ 13 years

La durée de la trachéotomie

Variable et dépend de plusieurs facteurs :

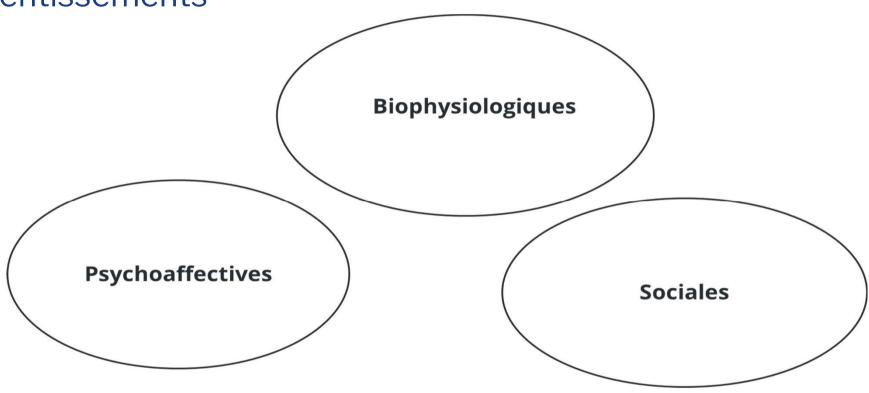
Indication

Des patients eux même et des comorbidités

	Total (%)	Decannulated (%)	50th percentile of decannulation time (95%CI)	75th percentile of decannulation time (95%CI)	P-value*
Patients	426	163 (38)	1.2 (0.9, 1.5)	5.3 (3.2, ∞)	
Sex					
Female	178 (42)	67 (41)	0.9 (0.5, 1.7)	$5.3\ (2.5, \infty)$	0.66
Male	148 (58)	96 (59)	1.3 (1.1, 2)	4.8 (3.1, ∞)	
Age at Trach					
<1 year	176 (41)	83 (47)	1.5 (1.2, 2)	2.9 (2.5, 4)	0.04
1-5 Years	102 (24)	29 (28)	1.8 (0.7, 3)	Not-est	
>5 years	148 (35)	51 (34)	0.4 (0.3, 0.7)	Not-est	
Tracheostomy indication					< 0.000
Airway obstruction	99 (23)	63 (64)	0.9 (0.7, 1.3)	2.2 (1.4, 2.8)	1
Resp-acquired	40 (9)	21 (52)	0.5 (0.2, 0.7)	$1.9(0.7, \infty)$	
Resp-congenital	66 (15)	32 (48)	1.5 (0.9, 2.3)	2.7 (2.2, 4)	
Neur-acquired	82 (19)	30 (37)	0.3 (0.2, 1.2)	Not-est	
Neur-congenital	139 (33)	17 (12)	Not-est	Not-est	
Oncology process					0.04
No	388 (91)	147 (90)	1.3 (1, 1.8)	$5.4 (3.2, \infty)$	
Yes	38 (9)	16 (10)	0.3 (0.2, 0.8)	$2.8 (0.3, \infty)$	
Heart disease					0.85
No	320 (75)	118 (72)	0.9 (0.6, 1.3)	$7.0 (3.2, \infty)$	
Yes	106 (25)	45 (28)	1.8 (1.2, 2.3)	4.0 (2.5, 7.4)	

Categorical variable	Failure (n = 11)	Success (n = 159)	р
Primary diagnosis, n (%)			.30
Lung disease	5 (45.5)	84 (52.8)	
Upper airway obstruction	6 (54.5)	53 (33.3)	
Number of comorbidities, n (%)			.01
0	1 (9.1)	89 (56.0)	
1	7 (63.6)	50 (31.4)	
≥2	3 (27.3)	20 (12.6)	
Endoscopic airway evaluation, n (%)			.61
Otolaryngology	4 (36.4)	36 (24)	
Pulmonology	1 (9.1)	24 (16)	
Both	6 (54.5)	90 (60)	

McPherson ML et al. A decade of pediatric tracheostomies: Indications, outcomes, and long-term prognosis. Pediatr Pulmonol. juill 2017


Kolb CM, Halbert K, Xiao W, Strang AR, Briddell JW. Comparing decannulation failures and successes in pediatric tracheostomy: An 18-year experience. Pediatr Pulmonol. août 2021;56(8):2761-8.

Retentissements

Chauvin É, Ghelab Z, Pilotti A. L'enfant trachéotomisé, de la surcharge à la décharge ? Contraste. 2022;56(2):159-77 Simon F, Rebichon C, Thierry B. Rôle de la confiance, de la croyance et du sacré dans le soin de la trachéotomie de l'enfant. Laennec. 15 sept 2020;Tome 68(3):32-42.

Les différents modes de communication pour l'enfant trachéotomisé

Impact de la trachéotomie sur la communication

Période d'hospitalisation / soins lourds

Facteurs aggravants:

Âge de la pose de canule

Durée

Shunt des voies aériennes supérieures

Accès aux vocalises

Expérimentation articulation

. Jiang et Morrison, The influence of long-term tracheostomy on speech and language development in children, Int. J. Pediatr. Otorhinolaryngol., 2003 . Hopkins, Whetstone, Foster, Blaney et Morrison, The impact of paediatric tracheostomy on both patient and parent, Int. J. Pediatr. Otorhinolaryngol., 2008

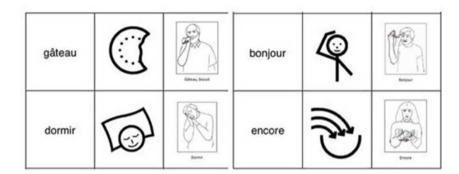

Modes de communication alternative

Signes:

Français signé / Signes avec bébé

MAKATON

LSF (Elix)


Modes de communication alternative

Programme Makaton

Pictogrammes:

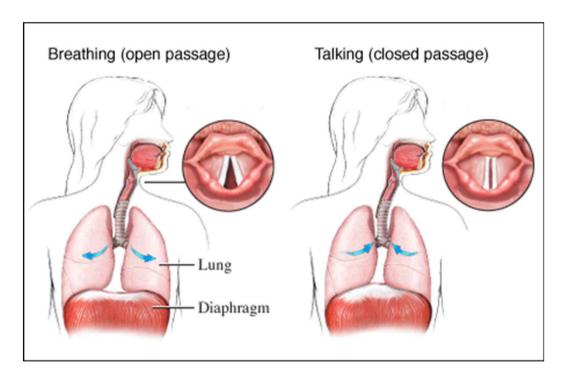
Makaton

PECS/PODD

Planches

Bénéfices vs Contraintes

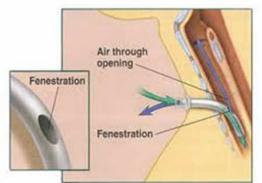
La phonation

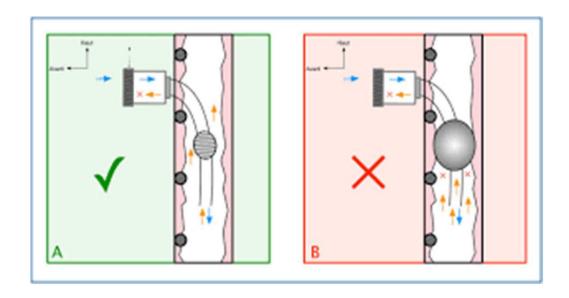


La phonation

Mécanique générale

Instrument à air

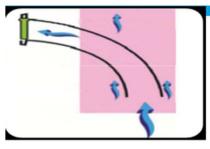



La phonation avec une canule de trachéotomie

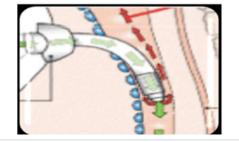
Quelque soit le système utilisé :

Il faut un passage d'air translaryngée (cordes vocales)

- Le larynx étant « shunté » / pathologique ou non (pas impossible)
- L'air prenant le chemin le plus court
- = difficile
- 1 / Paracanulaire
- 2 / Fenêtre



La phonation avec une canule de trachéotomie


Canule sans ballonnet non fenêtrée :

- √ L'air passe en « para » canule
- √ Réduire si besoin le diamètre pour optimiser le passage
- √ de l'air
- ✓ Le plus fréquent en pédiatrie

Canule sans ballonnet fenêtrée :

- √ L'air passe en plus par la fenêtre
- ✓ Chemise interne fenêtrée
- ✓ Chez le grand enfant ou adulte

Canule à ballonnet non fenêtrée :

- ✓ Le ballonnet doit être dégonflé ++++
- ✓ Moins bonne performance vocale (le ballonnet prend de
- √ la place) sauf ballonnet plaqué

Ballonnet gonflé en permanence ? Canule fenêtrée ?

La canule BIVONA Mid-Range Air-cuf

Ballonnet gonflé

Double ligne branchée à l'air en continu

Sortie de l'air au dessus du ballonnet

Adaptation et coordination a accompagner

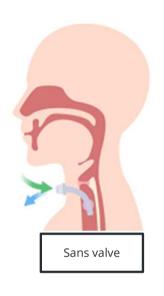
(ID 5 - 9,5)

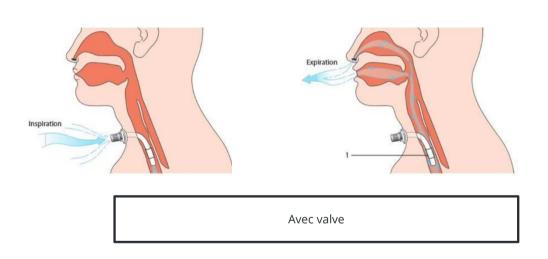
Sur mesure possible

La phonation avec une canule de trachéotomie

Manuellement : doigt sur la canule sur le temps expiratoire Par obturation sur les deux temps respiratoire : bouchon ou mandrin

Par une valve de phonation membrane ou clapet


La valve de phonation



Fonctionnement

Elle est munie d'un clapet ou d'une membrane qui s'ouvre au moment de l'inspiration et se ferme (+/-) au moment de l'expiration

Bilan pré-pose

Appréciation clinique :

- Etat cognitif de l'enfant / est-il d'accord ? avec les explications nécessaires et la réassurance
- Etat pulmonaire
- Tolérance au ballonnet dégonflé
- Gestion des secrétions
- Gestion du flux d'air trans-laryngé et de la pression glottique

Bilan pré-pose

- Evaluation de la filière laryngée
 - Fibroscopie
 - Adapter l'ID de la canule
 - Test valve phonatoire : clinique / anxiété (bulle)
 - Evaluation de la pression laryngée avec manomètre : inferieur a 10cmH20 = pression expiration
 - NLE (Valve à débit d'air réglable)

Contres indications +/-

- Obstruction sévère des VAS
- . VI avez PEP > 5
- Compliance pulmonaire altérée
- Patient nécessitant un ballonnet gonflé en permanence sans possibilité de canule avec ligne phonatoire

Patient hypoventilation alvéolaire d'origine centrale

Les valves de phonation

Valve unidirectionnelle simple : avec ou sans raccord à oxygène

Les valves de phonation

Valve avec arrivée d'air réglable en continue

La valves de phonation

Valve à positionner sur l'appareil de ventilation

valve à deux positions

Phonation et Déglutition

Phonation:

- Expérimentation sensori-motrice verbale
- Boucle audio-phonatoire

Déglutition:

- Amélioration de la pression sous-glottique (protection voies aériennes)
- Ré-afférentation laryngée (sensibilité laryngée)
- Meilleure gestion des sécrétions

. Ongkasuwan J, Turk CL, Rappazzo CA, Lavergne KA, Smith EO, Friedman EM. The effect of a speaking valve on laryngeal aspiration and penetration in children with tracheotomies. Laryngoscope. 2014

TAKE HOME MESSAGE

- Proposer la valve de phonation le + tôt possible (babillage)
- Importance du bilan pré-pose
- Si la valve n'est pas possible ne pas oublier les autres modes de communication
- Préparation à l'obturation et à la décanulation +++

Merci

Gaëlle CRESPEL, gaelle.crespel@aphp.fr, 01 40 25 77 14

Zina GHELAB, zina.ghelab@aphp.fr, 01 71 28 25 66

